2 00 5 Rota - Baxter Algebras , Dendriform Algebras and Poincaré - Birkhoff - Witt Theorem

نویسنده

  • LI GUO
چکیده

Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arose in connection with the work of Connes and Kreimer on the Birkhoff decomposition in renormalization theory in perturbative quantum field theory. We construct free non-commutative Rota-Baxter algebras and apply the construction to obtain universal enveloping Rota-Baxter algebras of dendriform dialgebras and trialgebras. We also prove an analog of the Poincaré-Birkhoff-Witt theorem for universal enveloping algebra in the context of dendriform trialgebras. In particular, every dendriform dialgebra and trialgebra is a subalgebra of a Rota-Baxter algebra. We explicitly show that the free dendriform dialgebras and trialgebras, as represented by planar trees, are canonical subalgebras of free Rota-Baxter algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 2 00 5 ROTA - BAXTER ALGEBRAS , DENDRIFORM ALGEBRAS AND POINCARÉ - BIRKHOFF - WITT THEOREM

Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arised in connection with the work of Connes and Kreimer on t...

متن کامل

. R A ] 1 3 O ct 2 00 5 ON FREE ROTA – BAXTER ALGEBRAS

Most of the studies on Rota–Baxter algebras (also known as Baxter algebras) have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obtained by Keigher and one of the authors in terms of mixable shuffles. Recently, noncommutative Rota–Baxter algebras have appeared both in physics in connection with the...

متن کامل

m at h . R A ] 1 4 O ct 2 00 5 ON FREE ROTA – BAXTER ALGEBRAS

Most of the studies on Rota–Baxter algebras (also known as Baxter algebras) have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obtained by Keigher and one of the authors in terms of mixable shuffles. Recently, noncommutative Rota–Baxter algebras have appeared both in physics in connection with the...

متن کامل

ar X iv : m at h / 05 10 26 6 v 3 [ m at h . R A ] 2 1 Fe b 20 06 ON FREE ROTA – BAXTER ALGEBRAS

A Rota–Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota–Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota–Baxter algebras have been for commutative algebras. Free commutative Rota–Baxter algebras were constructed by Rota and Cartier in the 1970s. A later construction was obta...

متن کامل

A Poincaré-birkhoff-witt Theorem for Generalized Lie Color Algebras

A proof of Poincaré-Birkhoff-Witt theorem is given for a class of generalized Lie algebras closely related to the Gurevich S-Lie algebras. As concrete examples, we construct the positive (negative) parts of the quantized universal enveloping algebras of type An and Mp,q,ǫ(n, K), which is a nonstandard quantum deformation of GL(n). In particular, we get, for both algebras, a unified proof of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004